Assi M. A., Doll M., Pryor R., Cooper K., Bearman G., Stevens M. P. Impact of coronavirus disease 2019 (COVID-19) on healthcare-associated infections: An update and perspective.: Infection Control & Hospital Epidemiology; 2021

Baskin J. L., Pui C.-H., Reiss U., Wilimas J. A., Metzger M. L., Ribeiro R. C., Howard S. C. Management of occlusion and thrombosis associated with long-term indwelling central venous catheters. The Lancet. 2009; 374:(9684)159-169

Bouchard J., Soroko S. B., Chertow G. M., Himmelfarb J., Ikizler T. A., Paganini E. P., Mehta R. L. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney International. 2009; 76:(4)422-427

Campos R. P., do Nascimento M. M., Chula D. C., Riella M. C. Minocycline-EDTA lock solution prevents catheter-related bacteremia in hemodialysis. Journal of the American Society of Nephrology: JASN. 2011; 22:(10)1939-1945

Device-associated infections in Canadian acute-care hospitals from 2009 to 2018. Canada communicable disease report = Releve des maladies transmissibles au Canada. 2020; 46:(1112)387-397

Caspari L., Epstein E., Blackman A., Jin L., Kaufman D. A. Human factors related to time-dependent infection control measures: “Scrub the hub” for venous catheters and feeding tubes. American Journal of Infection Control. 2017; 45:(6)648-651

Claure-Del Granado R., Mehta R. L. Fluid overload in the ICU: Evaluation and management. BMC Nephrology. 2016; 17:(1)

Coopersmith C. M., Rebmann T. L., Zack J. E., Ward M. R., Corcoran R. M., Schallom M. E., Sona C. S., Buchman T. G., Boyle W. A., Polish L. B., Fraser V. J. Effect of an education program on decreasing catheter related bloodstream infections in the surgical intensive care unit. Critical Care Medicine. 2002; 30:(1)59-64

Ferreira Chacon, J. M., Hato de Almeida E., de Lourdes Simões R., Lazzarin C Ozório, V., Alves B. C., Mello de Andréa M. L., Santiago Biernat, M., Biernat J. C. Randomized study of minocycline and edetic acid as a locking solution for central line (port-a-cath) in children with cancer. Chemotherapy. 2011; 57:(4)285-291

Gillespie R. S., Seidel K., Symons J. M. Effect of fluid overload and dose of replacement fluid on survival in hemofiltration. Pediatric Nephrology. 2004; 19:(12)1394-1399

Hermite L., Quenot J.-P., Nadji A., Barbar S. D., Charles P.-E., Hamet M., Jacquiot N., Ghiringhelli F., Freysz M. Sodium citrate versus saline catheter locks for non-tunneled hemodialysis central venous catheters in critically ill adults: A randomized controlled trial. Intensive Care Medicine. 2012; 38:(2)279-285

Holder C., Overton E., Kalaf S., Wong D., Holdsworh J., Yun M., Schreck D., Haun P., Omess S., Whitson M., Ott D., Mitchell R., Steinberg J. Impact of expansion of vascular access team on central-line-associated bloodstream infections. Infection Control & Hospital Epidemiology. 2020; 41:(S1)s260-s260

Justo J. A., Bookstaver P. B. Antibiotic lock therapy: Review of technique and logistical challenges. Infection and Drug Resistance. 2014; 7:343-363

Kanaa M., Wright M. J., Akbani H., Laboi P., Bhandari S., Sandoe J. A. T. Cathasept line lock and microbial colonization of tunneled hemodialysis catheters: A multicenter randomized controlled trial. American Journal of Kidney Diseases. 2015; 66:(6)1015-1023

Laxminarayan R., Duse A., Wattal C., Zaidi A. K. M., Wertheim H. F. L., Sumpradit N., Vlieghe E., Hara G. L., Gould I. M., Goossens H., Greko C., So A. D., Bigdeli M., Tomson G., Woodhouse W., Ombaka E., Peralta A. Q., Qamar F. N., Mir F., Cars O. Antibiotic resistance—The need for global solutions. The Lancet Infectious Diseases. 2013; 13:(12)1057-1098

Lee K. H., Cho N. H., Jeong S. J., Kim M. N., Han S. H., Song Y. G. Effect of central line bundle compliance on central line-associated bloodstream infections. Yonsei Medical Journal. 2018; 59:(3)376-382

LeRose J., Sandhu A., Polistico J., Ellsworth J., Cranis M., Jabbo L., Cullen L., Moshos J., Samavati L., Chopra T. The impact of coronavirus disease 2019 (COVID-19) response on central-line-associated bloodstream infections and blood culture contamination rates at a tertiary-care centre in the Greater Detroit area. Infection Control & Hospital Epidemiology. 2021; 42:(8)997-1000

Lissauer M. E., Leekha S., Preas M. A., Thom K. A., Johnson S. B. Risk factors for central line-associated bloodstream infections in the era of best practice. Journal of Trauma and Acute Care Surgery. 2012; 72:(5)1174-1180

Liu Y., Zhang A.-Q., Cao L., Xia H.-T., Ma J.-J. Taurolidine lock solutions for the prevention of catheter-related bloodstream infections: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE. 2013; 8:(11)

Luiz M. V. S. J., Scavone C., Tzanno C. The CLOCK trial, a double-blinded randomized controlled trial: Trisodium citrate 30% and minocycline 3 mg/mL plus EDTA 30 mg/mL are effective and safe for catheter patency maintenance among CKD 5D patients on hemodialysis. Hemodialysis International. International Symposium on Home Hemodialysis. 2017; 21:(2)294-304

Lorente L., Lecuona M., Jiménez A., Raja L., Cabrera J., Gonzalez O., Diosdado S., Marca L., Mora M. L. Chlorhexidine-silver sulfadiazine-or rifampicin-miconazole-impregnated venous catheters decrease the risk of catheter-related bloodstream infection similarly. American Journal of Infection Control. 2016; 44:(1)50-53

Luther M. K., Bilida S., Mermel L. A., LaPlante K. L. Ethanol and isopropyl alcohol exposure increases biofilm formation in Staphylococcus aureus and Staphylococcus epidermidis. Infectious Diseases and Therapy. 2015; 4:(2)219-226

Mermel L. A., Alang N. Adverse effects associated with ethanol catheter lock solutions: A systematic review. The Journal of Antimicrobial Chemotherapy. 2014; 69:(10)2611-2619

O'Grady N. P., Alexander M., Burns L. A., Dellinger E. P., Garland J., Heard S. O., Lipsett P. A., Masur H., Mermel L. A., Pearson M. L., Raad I. I., Randolph A. G., Rupp M. E., Saint S. Guidelines for the prevention of intravascular catheter-related infections. Clinical Infectious Diseases. 2011; 52:(9)e162-e193

Pearse I., Corley A., Rickard C. M., Marsh N. Unnecessary removal of vascular access devices due to suspected infection in Australian intensive care units.: Australian Critical Care; 2021

Percival S. L., Salisbury A.-M. The efficacy of tetrasodium EDTA on biofilms. In: Donelli G. (Ed). : Springer International Publishing; 2017

Pérez-Granda M. J., Barrio J. M., Muñoz P., Hortal J., Rincón C., Rabadán P. M., Pernia M. S., Bouza E. Ethanol lock therapy (E-Lock) in the prevention of catheter-related bloodstream infections (CR-BSI) after major heart surgery (MHS): A randomized clinical trial. PLoS ONE. 2014; 9:(3)

Quenot J.-P., Helms J., Bourredjem A., Dargent A., Meziani F., Badie J., Blasco G., Piton G., Capellier G., Mezher C., Rebibou J.-M., Nadji A., Crepin T., Barbar S. D., Fleck C., Cransac A., Boulin M., Binquet C., Soudry-Faure A., Bruyère R. Trisodium citrate 4% versus heparin as a catheter lock for non-tunneled hemodialysis catheters in critically ill patients: A multicenter, randomized clinical trial. Annals of Intensive Care. 2019; 9:(1)

Redelman C. V., Maduakolam C., Anderson G. G. Alcohol treatment enhances Staphylococcus aureus biofilm development. FEMS Immunology & Medical Microbiology. 2012; 66:(3)411-418

Rijnders B., DiSciullo G. J., Csiky B., Rutkowski B., Appelt K., Cheronis J., Aitchison R., Gordon G., Jadoul M., Fluck R. Locking hemodialysis catheters with trimethoprim-ethanol-ca-EDTA to prevent bloodstream infections: A randomized, evaluator-blinded clinical trial. Clinical Infectious Diseases. 2019; 69:(1)130-136

Ryder M. Cathether-related infections: It's all about biofilm. Topics in Advanced Practical Nursing EJournal. 2005; 5:(3)

Shah H. N., Schwartz J. L., Luna G., Cullen D. L. Bathing with 2% chlorhexidine gluconate: Evidence and costs associated with central line-associated bloodstream infections. Critical Care Nursing Quarterly. 2016; 39:(1)42-50

Souweine B., Lautrette A., Gruson D., Canet E., Klouche K., Argaud L., Bohe J., Garrouste-Orgeas M., Mariat C., Vincent F., Cayot S., Cointault O., Lepape A., Guelon D., Darmon M., Vesin A., Caillot N., Schwebel C., Boyer A., Timsit J.-F. Ethanol lock and risk of hemodialysis catheter infection in critically ill patients. A randomized controlled trial. American Journal of Respiratory and Critical Care Medicine. 2015; 191:(9)1024-1032

Stone P. W., Pogorzelska M., Kunches L., Hirschhorn L. R. Hospital staffing and health care-associated infections: A systematic review of the literature. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2008; 47:(7)937-944

Takashima M., Schults J., Mihala G., Corley A., Ullman A. Complication and failures of central vascular access device in adult critical care settings. Critical Care Medicine. 2018; 46:(12)1998-2009

Timsit J. F., Farkas J. C., Boyer J. M., Martin J. B., Misset B., Renaud B., Carlet J. Central vein catheter-related thrombosis in intensive care patients: Incidence, risks factors, and relationship with catheter-related sepsis. Chest. 1998; 114:(1)207-213

van Rooden C. J., Schippers E. F., Barge R. M. Y., Rosendaal F. R., Guiot H. F. L., van der Meer F. J. M., Meinders A. E., Huisman M. V. Infectious complications of central venous catheters increase the risk of catheter-related thrombosis in hematology patients: A prospective study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2005; 23:(12)2655-2660

Warren D. K., Zack J. E., Mayfield J. L., Chen A., Prentice D., Fraser V. J., Kollef M. H. The effect of an education program on the incidence of central venous catheter-associated bloodstream infection in a medical ICU. Chest. 2004; 126:(5)1612-1618

Wolf J., Connell T. G., Allison K. J., Tang L., Richardson J., Branum K., Borello E., Rubnitz J. E., Gaur A. H., Hakim H., Su Y., Federico S. M., Mechinaud F., Hayden R. T., Monagle P., Worth L. J., Curtis N., Flynn P. M. Treatment and secondary prophylaxis with ethanol lock therapy for central line-associated bloodstream infection in paediatric cancer: A randomised, double-blind, controlled trial. The Lancet Infectious Diseases. 2018; 18:(8)854-863

Ziegler M. J., Pellegrini D. C., Safdar N. Attributable mortality of central line associated bloodstream infection: Systematic review and meta-analysis. Infection. 2015; 43:(1)29-36

Central venous access device locking practices in the adult critical care setting: a single-centre, observational study establishing duration of locking per catheter lumen

27 October 2022
Volume 31 · Issue 19



Central line complications remain a problem in critical care patient populations. Various interventions to prevent or treat complications, such as central line-associated bloodstream infection and occlusion, have been the focus of recent research. Although alternative catheter locking solutions have been shown to be effective in other patient populations, their applicability to the critical care setting remains unclear. Due to the high acuity of critical care patients, it is uncertain whether their central lines remain locked for a duration long enough for alternative locking solutions to provide any effect.


This single-centre, prospective, observational study aimed to gather information about the length of time central line lumens remain in a locked state in the average critical care patient. Baseline rates of various central line complications were also tracked.


Results of this study indicate that the majority of central lines will have at least one lumen locked for an average of 36.6% of their time in situ.


It is anticipated that this length of time provides enough exposure for alternative locking solutions to potentially make a difference in central line complications in this patient population. Results of this study can be used for planning future multi-centre, randomized controlled trials investigating the efficacy of novel central line locking solutions to prevent central line complications in critically ill patients.

Insertion of a central venous access device (CVAD) facilitates easy access to a patient's circulation, enables administration of irritant medications, parenteral nutrition, antibiotics, and facilitates frequent bloodwork. Central venous access is also used to deliver lifesaving measures including renal replacement therapy, extracorporeal membrane oxygenation, and rapid delivery of fluids during hypovolemic shock (O'Grady et al, 2011). As such, a CVAD is placed frequently among intensive care unit (ICU) patients. Although they are essential to care, complications such as central line infection and occlusion may develop. These complications may become life threatening and serve to increase morbidity and mortality of ICU patients (Ziegler et al, 2015). Preventing complications associated with central venous access is imperative to ensuring the best possible care for patients experiencing critical illness.

Many interventions to prevent complications, such as central line-associated bloodstream infection (CLABSI), catheter occlusion, and premature removal, have been implemented into ICU standards of care. Examples include the use of catheter insertion bundles and checklists (Lee et al, 2018), hub decontamination, or ‘scrub the hub’ procedures (Caspari et al, 2017), regular dressing changes and flushing (O'Grady et al, 2011), daily chlorhexidine bathing (Shah et al, 2016), quality improvement projects relating to adequate staff training (Coopersmith et al, 2002; Warren et al, 2004), and maintenance of appropriate staffing of units (Holder et al, 2020; Stone et al, 2008). Many modifications to catheters themselves are also available including silver impregnation and antibiotic coating (Lorente et al, 2016). Despite these efforts, CVAD complications remain a problem in the ICU setting. According to the Canadian Nosocomial Infection Surveillance Program, the rate of CLABSI was reported to be 1.2 per 1,000 catheter days in the adult mixed ICU in 2018 (Canadian Nosocomial Infection Surveillance Program1*, 2020). Recent changes to practice caused by the COVID-19 pandemic have been shown to increase rates of CLABSI by as much as 325% (Assi et al, 2021; LeRose et al, 2021).

Register now to continue reading

Thank you for visiting British Journal of Nursing and reading some of our peer-reviewed resources for nurses. To read more, please register today. You’ll enjoy the following great benefits:

What's included

  • Limited access to clinical or professional articles

  • Unlimited access to the latest news, blogs and video content